首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   597744篇
  免费   20298篇
  国内免费   1017篇
工业技术   619059篇
  2021年   5773篇
  2020年   5402篇
  2019年   8215篇
  2018年   12025篇
  2017年   12532篇
  2016年   13388篇
  2015年   9613篇
  2014年   13814篇
  2013年   30752篇
  2012年   18404篇
  2011年   23404篇
  2010年   19493篇
  2009年   21217篇
  2008年   21008篇
  2007年   20492篇
  2006年   17806篇
  2005年   16007篇
  2004年   15243篇
  2003年   14897篇
  2002年   14385篇
  2001年   13846篇
  2000年   13301篇
  1999年   12460篇
  1998年   27763篇
  1997年   20069篇
  1996年   15040篇
  1995年   11951篇
  1994年   10786篇
  1993年   10537篇
  1992年   8265篇
  1991年   8043篇
  1990年   7962篇
  1989年   7690篇
  1988年   7392篇
  1987年   6669篇
  1986年   6468篇
  1985年   7336篇
  1984年   6644篇
  1983年   6361篇
  1982年   5718篇
  1981年   5848篇
  1980年   5588篇
  1979年   5690篇
  1978年   5635篇
  1977年   6151篇
  1976年   7654篇
  1975年   5071篇
  1974年   4867篇
  1973年   4944篇
  1972年   4257篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
31.
With liquefied natural gas becoming increasingly prevalent as a flexible source of energy, the design and optimization of industrial refrigeration cycles becomes even more important. In this article, we propose an integrated surrogate modeling and optimization framework to model and optimize the complex CryoMan Cascade refrigeration cycle. Dimensionality reduction techniques are used to reduce the large number of process decision variables which are subsequently supplied to an array of Gaussian processes, modeling both the process objective as well as feasibility constraints. Through iterative resampling of the rigorous model, this data-driven surrogate is continually refined and subsequently optimized. This approach was not only able to improve on the results of directly optimizing the process flow sheet but also located the set of optimal operating conditions in only 2 h as opposed to the original 3 weeks, facilitating its use in the operational optimization and enhanced process design of large-scale industrial chemical systems.  相似文献   
32.
Deep geological repositories for radioactive waste contain metallic materials, either used to construct disposal canisters or as low-/intermediate-level waste (L/ILW). The safety relevance of corrosion is linked to canister lifetime in the former case and gas generation in the latter. More specifically, the Belgian “supercontainer” concept envisages mild steel for the used fuel disposal canister, and in the case of the Swiss L/ILW repository, mild steels are the largest metallic waste component due to the decommissioning of civilian power-generating facilities. For these circumstances, the corrosion environment is dominated by the chemistry of cement, which is used as buffer or backfill material. The corrosion behaviour of mild steel in anoxic environments was studied through the analysis of the hydrogen end-product. Hydrogen analysis was conducted by periodically purging the cell head-space and analysing the gas using a solid-state hydrogen sensor. While this method is limited to providing only uniform corrosion rates averaged over periods of time, ranging from weeks to months, it provides excellent resolution and sensitivity. The test cell environments were matched against the anticipated Belgian high-level waste and Swiss L/ILW repository environments, and also against experiments that have been conducted by other researchers for comparative purposes. Samples were exposed to synthetic cement pore waters, representing fresh and degraded cement. In young cement waters, the formation of initial corrosion products resulted in steel wire corrosion rates of the order of µm/year, which, at 80°C rapidly declined to ∼10 nm/year. In contrast, SA516 grade 70 steel plate corroded much more slowly under similar conditions. In aged cement waters, initial corrosion rates were higher but declined faster towards a longer-term rate of ∼10 nm/year. 316L stainless steel, embedded in cementitious material, corroded at a rate of <1 nm/year at 50°C.  相似文献   
33.
The SAFT-γ Mie group-contribution equation of state is used to represent the fluid-phase behavior of aqueous solutions of a variety of linear, branched, and cyclic amines. New group interactions are developed in order to model the mixtures of interest, including the like and unlike interactions between alkyl primary, secondary, and tertiary amine groups (NH2, NH, N), cyclic secondary and tertiary amine groups (cNH, cN), and cyclic methine-amine groups (cCHNH, cCHN) with water (H2O). The group-interaction parameters are estimated from appropriate experimental thermodynamic data for pure amines and selected mixtures. By taking advantage of the group-contribution nature of the method, one can describe the fluid-phase behavior of mixtures of molecules comprising those groups over broad ranges of temperature, pressure, and composition. A number of aqueous solutions of amines are studied including linear, branched aliphatic, and cyclic amines. Liquid–liquid equilibria (LLE) bounded by lower critical solution temperatures (LCSTs) have been reported experimentally and are reproduced here with the SAFT-γ Mie approach. The main feature of the approach is the ability not only to represent accurately the experimental data employed in the parameter estimation, but also to predict the vapor–liquid, liquid–liquid, and vapor–liquid–liquid equilibria, and LCSTs with the same set of parameters. Pure compound and binary phase diagrams of diverse types of amines and their aqueous solutions are assessed in order to demonstrate the main features of the thermodynamic and fluid-phase behavior.  相似文献   
34.
Glass and Ceramics - An analysis of the specific mechanisms of the influence of the state of the grain structure on the thermoelectric properties (electrical resistivity and total thermal...  相似文献   
35.
Refractories and Industrial Ceramics - Technology for producing alumina-periclase-carbon refractories of the brands APUK-D and APU-D is developed and implemented. Use of complex antioxidant and...  相似文献   
36.
Laser ablation of high-temperature ceramic coatings results in thermal residual stresses due to which the coatings fail by cracking and debonding. Hence, the measurement of such residual stresses during laser ablation process holds utmost importance from the view of performance of coatings in extreme conditions. The present research aims at investigating the effect of laser parameters such as laser pulse energy, scanning speed and line spacing on thermal residual stresses induced in tantalum carbide-coated graphite substrates. Residual stresses were measured using micro-Raman spectroscopy and correlated with Raman peak shifts. Transient thermal analysis was performed using COMSOL Multiphysics to model the single ablated track and residual stresses were reported at low, moderate and high pulse energy regimes. The results showed that the initial laser conditions caused higher tensile residual stresses. Moderate pulse energy regime comprised higher compressive residual stresses due to off centre overlapping of the laser pulses. Higher pulse energy (250 μJ), higher scanning speed (1000 mm/s) and moderate line spacing (20 μm) caused accumulation of tensile residual stresses during the final stage of laser ablation. The deviation of experimental residual stresses from COMSOL numerical model was attributed to unaccounted additional stresses induced during thermal spraying process and deformation potentials in the numerical model.  相似文献   
37.
Fibre Chemistry - An analysis of the aramid fiber market including the range of industrial textile materials containing chemical fibers for specialized protective clothing of metallurgical workers,...  相似文献   
38.
Polyamines are ubiquitous, low-molecular-weight aliphatic compounds, present in living organisms and essential for cell growth and differentiation. Copper amine oxidases (CuAOs) oxidize polyamines to aminoaldehydes releasing ammonium and hydrogen peroxide, which participates in the complex network of reactive oxygen species acting as signaling molecules involved in responses to biotic and abiotic stresses. CuAOs have been identified and characterized in different plant species, but the most extensive study on a CuAO gene family has been carried out in Arabidopsis thaliana. Growing attention has been devoted in the last years to the investigation of the CuAO expression pattern during development and in response to an array of stress and stress-related hormones, events in which recent studies have highlighted CuAOs to play a key role by modulation of a multilevel phenotypic plasticity expression. In this review, the attention will be focused on the involvement of different AtCuAOs in the IAA/JA/ABA signal transduction pathways which mediate stress-induced phenotypic plasticity events.  相似文献   
39.
This work presents the dielectric properties of YNbO4 (YNO)–TiO2 composites in the microwave range. X-ray diffraction analysis demonstrates that the addition of TiO2 to YNO results in the formation of a Y(Nb0.5Ti0.5)2O6 phase. In the microwave range, the values of permittivity and dielectric loss did not present major changes with the increment of TiO2. Moreover, the addition of TiO2 results in an improvement in the thermal stability of YNO, with YNO63 demonstrating a resonant frequency of ?8.96 ppm.°C?1. We utilised numerical simulations to evaluate the behaviour of these materials as dielectric resonator antennae and it is found that they exhibit a reflection coefficient below ?10 dB at the resonant frequency, with a realised gain of 4.94 – 5.76 dBi, a bandwidth of 665–1050 MHz and a radiation efficiency above 84%. Our results indicate that YNO–TiO2 composites are interesting candidates for microwave operating devices.  相似文献   
40.
The solid solutions based on the pyrochlore-type system Bi2MgNb2-xTaxO9 were formed in the compositional range х = 0–2.0 (Bi1·6Mg0·8Nb1.6-tTatO7.2, t = 0–1.6). The Rietveld method was used to refine the structure for Bi2MgNb2-xTaxO9 (x = 0, 1.0, 2.0). The increasing tantalum content led to the slight decrease in the cubic unit cell parameters from 10.56934 (4) Å for x = 0 and 10.54607 (3) Å for x = 2 (sp.gr. Fd-3m:2). At the same time, tantalum additions suppressed grain growth in the pyrochlore ceramics during sintering and made it possible to obtain materials with an average grain size of 1–2 μm (Bi1·6Mg0·8Ta1·6O7.2). The increase in the Ta5+ concentration led to the decrease in the dielectric permeability from 104 (Bi1·6Mg0·8Nb1·6O7.2) to 20 (Bi1·6Mg0·8Ta1·6O7.2) at room temperature, while the dielectric loss tangent remained lower than 0.002, which is due to the small grain size and the high porosity of the samples. An increase in temperature has practically no effect on the values of the dielectric permittivity in the entire frequency range. The samples have weak through conductivity. The activation energies of electrical conductivity varied in the range of 0.84–1.00 eV, and the less tantalum, the lower the activation energy. The electrical properties of the samples at 200 Hz to 1 MHz are described by the simplest parallel scheme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号